Technical Bulletin

Fiber Data

THE STRONGEST NAME IN ROPE

FIBER STRENGTH RETENTION AFTER CHEMICAL IMMERSION

(Dyneema[®] strength retention after 6-months immersion)

AGENT	HMPE	
Sea Water	100%	
Hydraulic Fluid	100%	
Kerosene	100%	
Gasoline	100%	
Glacial Acetic Acid	100%	
1 M Hydrochloric Acid	100%	
5 M Sodium Hydroxide	100%	
Ammonium Hydroxide (29%)	100%	
Hypophosphite Solution (5%)	100%	
Perchloroethylene	100%	
10% Detergent Solution	100%	
Bleach	91%	
	5.70	

COMPARISON OF FIBER CHARACTERISTICS

(using nylon as a basis of 1.0)

GENERIC FIBER TYPE	NYLON	POLYESTER	POLYPROPYLENE	HMPE	LCP	ARAMID	PBO
Tenacity (g/den) ¹	7.5 – 10.5	7 – 10	6.5	32 (SK-60) 40 (SK-75)	23 – 26	28	42
Elongation ²	15 – 28%	12 – 18%	18 – 22%	3.6%	3.3%	4.6%	2.5%
Coefficient of Friction ³	.12 – .15	.12 – .15	.15 – .22	.05 – .07	.12 – .15	.12 – .15	.18
Melting Point	425°– 490° F	480°– 500° F	330° F	300° F	625° F	930° F*	1200° F*
Critical Temperature ⁴	325° F	350° F	250° F	150° F	300° F	520° F	750° F
Specific Gravity	1.14	1.38	.91	.98	1.40	1.39	1.56
Cold-Flow (Creep) ⁵ In Mooring Line Use	Negligible	Negligible	Negligible to high	Negligible to high	Negligible	Negligible	Negligible

* Char temperature — does not melt

- ¹ **TENACITY** is the measurement of the resistance of fiber to breaking.
- ² ELONGATION refers to percent elongation of fiber at break.
- ³ COEFFICIENT OF FRICTION is based on reluctance to slip or slide.
- ⁴ CRITICAL TEMPERATURE is defined as the point at which degradation is caused by temperature alone.
- ⁵ COLD FLOW (CREEP) is defined as fiber deformation (elongation) due to molecular slippage under a constant static loading situation. Fibers that have this inherent characteristic will display extremely low or negligible creep if minor fluctuations occur in the rate and/or frequency of load levels. In rope form, this would apply to polypropylene, polyethylene and HMPE fibers such as Spectra[®] and Dyneema[®] fiber.

ROPE CONSTRUCTION